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FOREWORD

What do we talk about when we talk about architecture?

As with any metaphor, describing software through the lens of architecture
can hide as much as it can reveal. It can both promise more than it can deliver
and deliver more than it promises.

The obvious appeal of architecture is structure, and structure is something
that dominates the paradigms and discussions of software development—
components, classes, functions, modules, layers, and services, micro or macro.
But the gross structure of so many software systems often defies either belief
or understanding—Enterprise Soviet schemes destined for legacy, improbable
Jenga towers reaching toward the cloud, archaeological layers buried in a big-
ball-of-mud slide. It’s not obvious that software structure obeys our intuition
the way building structure does.

Buildings have an obvious physical structure, whether rooted in stone or
concrete, whether arching high or sprawling wide, whether large or small,
whether magnificent or mundane. Their structures have little choice but to
respect the physics of gravity and their materials. On the other hand—except
in its sense of seriousness—software has little time for gravity. And what is
software made of? Unlike buildings, which may be made of bricks, concrete,



wood, steel, and glass, software is made of software. Large software
constructs are made from smaller software components, which are in turn
made of smaller software components still, and so on. It’s coding turtles all
the way down.

When we talk about software architecture, software is recursive and fractal in
nature, etched and sketched in code. Everything is details. Interlocking levels
of detail also contribute to a building’s architecture, but it doesn’t make sense
to talk about physical scale in software. Software has structure—many
structures and many kinds of structures—but its variety eclipses the range of
physical structure found in buildings. You can even argue quite convincingly
that there is more design activity and focus in software than in building
architecture—in this sense, it’s not unreasonable to consider software architecture
more architectural than building architecture!

But physical scale is something humans understand and look for in the world.
Although appealing and visually obvious, the boxes on a PowerPoint diagram
are not a software system’s architecture. There’s no doubt they represent a
particular view of an architecture, but to mistake boxes for the big picture—
for the architecture—is to miss the big picture and the architecture: Software
architecture doesn’t look like anything. A particular visualization is a choice,
not a given. It is a choice founded on a further set of choices: what to include;
what to exclude; what to emphasize by shape or color; what to de-emphasize
through uniformity or omission. There is nothing natural or intrinsic about
one view over another.

Although it might not make sense to talk about physics and physical scale in
software architecture, we do appreciate and care about certain physical
constraints. Processor speed and network bandwidth can deliver a harsh
verdict on a system’s performance. Memory and storage can limit the
ambitions of any code base. Software may be such stuff as dreams are made
on, but it runs in the physical world.

This is the monstrosity in love, lady, that the will is infinite, and the execution
confined; that the desire is boundless, and the act a slave to limit.
—William Shakespeare



The physical world is where we and our companies and our economies live.
This gives us another calibration we can understand software architecture by,
other less physical forces and quantities through which we can talk and
reason.

Architecture represents the significant design decisions that shape a system,
where significant is measured by cost of change.
—Grady Booch

Time, money, and effort give us a sense of scale to sort between the large and
the small, to distinguish the architectural stuff from the rest. This measure
also tells us how we can determine whether an architecture is good or not:
Not only does a good architecture meet the needs of its users, developers, and
owners at a given point in time, but it also meets them over time.

If you think good architecture is expensive, try bad architecture.
—Brian Foote and Joseph Yoder

The kinds of changes a system’s development typically experiences should not
be the changes that are costly, that are hard to make, that take managed
projects of their own rather than being folded into the daily and weekly flow
of work.

That point leads us to a not-so-small physics-related problem: time travel.
How do we know what those typical changes will be so that we can shape
those significant decisions around them? How do we reduce future
development effort and cost without crystal balls and time machines?

Architecture is the decisions that you wish you could get right early in a project,
but that you are not necessarily more likely to get them right than any other.
—Ralph Johnson

Understanding the past is hard enough as it is; our grasp of the present is
slippery at best; predicting the future is nontrivial.

This is where the road forks many ways.



Down the darkest path comes the idea that strong and stable architecture
comes from authority and rigidity. If change is expensive, change is
eliminated—its causes subdued or headed off into a bureaucratic ditch. The
architect’s mandate is total and totalitarian, with the architecture becoming a
dystopia for its developers and a constant source of frustration for all.

Down another path comes a strong smell of speculative generality. A route
filled with hard-coded guesswork, countless parameters, tombs of dead code,
and more accidental complexity than you can shake a maintenance budget at.

The path we are most interested is the cleanest one. It recognizes the softness
of software and aims to preserve it as a first-class property of the system. It
recognizes that we operate with incomplete knowledge, but it also
understands that, as humans, operating with incomplete knowledge is
something we do, something we’re good at. It plays more to our strengths
than to our weaknesses. We create things and we discover things. We ask
questions and we run experiments. A good architecture comes from
understanding it more as a journey than as a destination, more as an ongoing
process of enquiry than as a frozen artifact.

Architecture is a hypothesis, that needs to be proven by implementation and
measurement.

—Tom Gilb
To walk this path requires care and attention, thought and observation,
practice and principle. This might at first sound slow, but it’s all in the way

that you walk.

The only way to go fast, is to go well.
—Robert C. Martin

Enjoy the journey.

—Kevlin Henney
May 2017



PREFACE

The title of this book is Clean Architecture. That’s an audacious name. Some

would even call it arrogant. So why did I choose that title, and why did I write
this book?

I wrote my very first line of code in 1964, at the age of 12. The year is now
2016, so I have been writing code for more than half a century. In that time, I
have learned a few things about how to structure software systems—things
that I believe others would likely find valuable.

I learned these things by building many systems, both large and small. I have
built small embedded systems and large batch processing systems. I have built
real-time systems and web systems. I have built console apps, GUI apps,
process control apps, games, accounting systems, telecommunications
systems, design tools, drawing apps, and many, many others.

I have built single-threaded apps, multithreaded apps, apps with few heavy-
weight processes, apps with many light-weight processes, multiprocessor
apps, database apps, mathematical apps, computational geometry apps, and
many, many others.



I’ve built a lot of apps. I've built a lot of systems. And from them all, and by
taking them all into consideration, I’ve learned something startling.

The architecture rules are the same!

This is startling because the systems that I have built have all been so radically
different. Why should such different systems all share similar rules of
architecture? My conclusion is that the rules of software architecture are
independent of every other variable.

This is even more startling when you consider the change that has taken place
in hardware over the same half-century. I started programming on machines
the size of kitchen refrigerators that had half-megahertz cycle times, 4K of
core memory, 32K of disk memory, and a 10 character per second teletype
interface. | am writing this preface on a bus while touring in South Africa. I
am using a MacBook with four i7 cores running at 2.8 gigahertz each. It has
16 gigabytes of RAM, a terabyte of SSD, and a 28801800 retina display
capable of showing extremely high-definition video. The difference in
computational power is staggering. Any reasonable analysis will show that
this MacBook is at least 10?2 more powerful than those early computers that I
started using half a century ago.

Twenty-two orders of magnitude is a very large number. It is the number of
angstroms from Earth to Alpha-Centuri. It is the number of electrons in the
change in your pocket or purse. And yet that number—that number at least—
is the computational power increase that I have experienced in my own
lifetime.

And with all that vast change in computational power, what has been the
effect on the software I write? It’s gotten bigger certainly. I used to think 2000
lines was a big program. After all, it was a full box of cards that weighed 10
pounds. Now, however, a program isn’t really big until it exceeds 100,000
lines.

The software has also gotten much more performant. We can do things today
that we could scarcely dream about in the 1960s. The Forbin Project, The



Moon Is a Harsh Mistress, and 2001: A Space Odyssey all tried to imagine
our current future, but missed the mark rather significantly. They all imagined
huge machines that gained sentience. What we have instead are impossibly
small machines that are still ... just machines.

And there is one thing more about the software we have now, compared to the
software from back then: It’s made of the same stuff. It’s made of if
statements, assignment statements, and while loops.

Oh, you might object and say that we’ve got much better languages and
superior paradigms. After all, we program in Java, or C#, or Ruby, and we
use object-oriented design. True—and yet the code is still just an assemblage

of sequence, selection, and iteration, just as it was back in the 1960s and
1950s.

When you really look closely at the practice of programming computers, you
realize that very little has changed in 50 years. The languages have gotten a
little better. The tools have gotten fantastically better. But the basic building
blocks of a computer program have not changed.

If T took a computer programmer from 1966 forward in time to 2016 and put
her! in front of my MacBook running Intelli] and showed her Java, she might
need 24 hours to recover from the shock. But then she would be able to write
the code. Java just isn’t that different from C, or even from Fortran.

And if T transported you back to 1966 and showed you how to write and edit
PDP-8 code by punching paper tape on a 10 character per second teletype,
you might need 24 hours to recover from the disappointment. But then you
would be able to write the code. The code just hasn’t changed that much.

That’s the secret: This changelessness of the code is the reason that the rules
of software architecture are so consistent across system types. The rules of
software architecture are the rules of ordering and assembling the building

1. And she very likely would be female since, back then, women made up a large fraction of programmers.



blocks of programs. And since those building blocks are universal and haven’t
changed, the rules for ordering them are likewise universal and changeless.

Younger programmers might think this is nonsense. They might insist that
everything is new and different nowadays, that the rules of the past are past
and gone. If that is what they think, they are sadly mistaken. The rules have
not changed. Despite all the new languages, and all the new frameworks, and
all the paradigms, the rules are the same now as they were when Alan Turing
wrote the first machine code in 1946.

But one thing has changed: Back then, we didn’t know what the rules were.
Consequently, we broke them, over and over again. Now, with half a century
of experience behind us, we have a grasp of those rules.

And it is those rules—those timeless, changeless, rules—that this book is all
about.

Register your copy of Clean Architecture on the InformlIT site for
convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN
(9780134494166) and click Submit. Look on the Registered Products tab
for an Access Bonus Content link next to this product, and follow that
link to access the bonus materials.
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INTRODUCTION

It doesn’t take a huge amount of knowledge and skill to get a program
working. Kids in high school do it all the time. Young men and women in
college start billion-dollar businesses based on scrabbling together a few lines
of PHP or Ruby. Hoards of junior programmers in cube farms around the
world slog through massive requirements documents held in huge issue
tracking systems to get their systems to “work” by the sheer brute force of
will. The code they produce may not be pretty; but it works. It works because
getting something to work—once—just isn’t that hard.

Getting it right is another matter entirely. Getting software right is hard. It
takes knowledge and skills that most young programmers haven’t yet
acquired. It requires thought and insight that most programmers don’t take
the time to develop. It requires a level of discipline and dedication that most
programmers never dreamed they’d need. Mostly, it takes a passion for the
craft and the desire to be a professional.

And when you get software right, something magical happens: You don’t need
hordes of programmers to keep it working. You don’t need massive
requirements documents and huge issue tracking systems. You don’t need
global cube farms and 24/7 programming.



When software is done right, it requires a fraction of the human resources to
create and maintain. Changes are simple and rapid. Defects are few and far
between. Effort is minimized, and functionality and flexibility are maximized.

Yes, this vision sounds a bit utopian. But I’ve been there; I’ve seen it happen.
I’ve worked in projects where the design and architecture of the system made
it easy to write and easy to maintain. I’ve experienced projects that required a
fraction of the anticipated human resources. I’ve worked on systems that had
extremely low defect rates. I’ve seen the extraordinary effect that good
software architecture can have on a system, a project, and a team. I’ve been to
the promised land.

But don’t take my word for it. Look at your own experience. Have you
experienced the opposite? Have you worked on systems that are so
interconnected and intricately coupled that every change, regardless of how
trivial, takes weeks and involves huge risks? Have you experienced the
impedance of bad code and rotten design? Has the design of the systems
you’ve worked on had a huge negative effect on the morale of the team, the
trust of the customers, and the patience of the managers? Have you seen
teams, departments, and even companies that have been brought down by the
rotten structure of their software? Have you been to programming hell?

I have—and to some extent, most of the rest of us have, too. It is far more
common to fight your way through terrible software designs than it is to
enjoy the pleasure of working with a good one.



WHAT Is DESIGN
AND ARCHITECTURE?




There has been a lot of confusion about design and architecture over the years.
What is design? What is architecture? What are the differences between the two?

One of the goals of this book is to cut through all that confusion and to
define, once and for all, what design and architecture are. For starters, I’ll
assert that there is no difference between them. None at all.

The word “architecture” is often used in the context of something at a high
level that is divorced from the lower-level details, whereas “design” more often
seems to imply structures and decisions at a lower level. But this usage is
nonsensical when you look at what a real architect does.

Consider the architect who designed my new home. Does this home have an
architecture? Of course it does. And what is that architecture? Well, it is the
shape of the home, the outward appearance, the elevations, and the layout of
the spaces and rooms. But as I look through the diagrams that my architect
produced, I see an immense number of low-level details. I see where every
outlet, light switch, and light will be placed. I see which switches control which
lights. I see where the furnace is placed, and the size and placement of the
water heater and the sump pump. I see detailed depictions of how the walls,
roofs, and foundations will be constructed.

In short, I see all the little details that support all the high-level decisions.
[ also see that those low-level details and high-level decisions are part of the
whole design of the house.

And so it is with software design. The low-level details and the high-level
structure are all part of the same whole. They form a continuous fabric that
defines the shape of the system. You can’t have one without the other; indeed,
no clear dividing line separates them. There is simply a continuum of
decisions from the highest to the lowest levels.

THE GoAL?

And the goal of those decisions? The goal of good software design? That goal
is nothing less than my utopian description:



The goal of software architecture is to minimize the human resources required
to build and maintain the required system.

The measure of design quality is simply the measure of the effort required to
meet the needs of the customer. If that effort is low, and stays low throughout
the lifetime of the system, the design is good. If that effort grows with each
new release, the design is bad. It’s as simple as that.

CASE STUDY

As an example, consider the following case study. It includes real data from a
real company that wishes to remain anonymous.

First, let’s look at the growth of the engineering staff. I’'m sure you’ll agree
that this trend is very encouraging. Growth like that shown in Figure 1.1 must

be an indication of significant success!

Market-Leading Software Product Life Cycle

1400

1200 -

1000 -

800

600 ® Engineering Staff
400 -

200 -

i = m
1 2 3 4 5 6 7 8
Figure 1.1 Growth of the engineering staff

Reproduced with permission from a slide presentation by Jason Gorman



Now let’s look at the company’s productivity over the same time period, as
measured by simple lines of code (Figure 1.2).

Market-Leading Software Product Life Cycle
8000
Pfoduc1
i 7000

(KLOC)

600
5000
4000
3000
2000
1000

0

1 2 3 4 5 6 7 8

Figure 1.2 Productivity over the same period of time

o

Clearly something is going wrong here. Even though every release is
supported by an ever-increasing number of developers, the growth of the code
looks like it is approaching an asymptote.

Now here’s the really scary graph: Figure 1.3 shows how the cost per line of
code has changed over time.

These trends aren’t sustainable. It doesn’t matter how profitable the company
might be at the moment: Those curves will catastrophically drain the profit
from the business model and drive the company into a stall, if not into a
downright collapse.

What caused this remarkable change in productivity? Why was the code
40 times more expensive to produce in release 8 as opposed to release 1?



CASE STUuDY
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Market-Leading Software Product Life Cycle
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Major release

Figure 1.3 Cost per line of code over time

THE SIGNATURE OF A MEss

What you are looking at is the signature of a mess. When systems are thrown

together in a hurry, when the sheer number of programmers is the sole driver
of output, and when little or no thought is given to the cleanliness of the code

or the structure of the design, then you can bank on riding this curve to its

ugly end.

Figure 1.4 shows what this curve looks like to the developers. They started

out at nearly 100% productivity, but with each release their productivity
declined. By the fourth release, it was clear that their productivity was going

to bottom out in an asymptotic approach to zero.
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Figure 1.4 Productivity by release

From the developers’ point of view, this is tremendously frustrating, because
everyone is working hard. Nobody has decreased their effort.

And yet, despite all their heroics, overtime, and dedication, they simply aren’t
getting much of anything done anymore. All their effort has been diverted
away from features and is now consumed with managing the mess. Their job,
such as it is, has changed into moving the mess from one place to the next,
and the next, and the next, so that they can add one more meager little

feature.

THE EXEcuTIVE VIEW

If you think that’s bad, imagine what this picture looks like to the executives!
Consider Figure 1.5, which depicts monthly development payroll for the same

period.
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Figure 1.5 Monthly development payroll by release

Release 1 was delivered with a monthly payroll of a few hundred thousand
dollars. The second release cost a few hundred thousand more. By the eighth
release monthly payroll was $20 million, and climbing.

Just this chart alone is scary. Clearly something startling is happening. One
hopes that revenues are outpacing costs and therefore justifying the expense.
But no matter how you look at this curve, it’s cause for concern.

But now compare the curve in Figure 1.5 with the lines of code written per
release in Figure 1.2. That initial few hundred thousand dollars per month
bought a lot of functionality—but the final $20 million bought almost
nothing! Any CFO would look at these two graphs and know that immediate
action is necessary to stave off disaster.

But which action can be taken? What has gone wrong? What has caused this
incredible decline in productivity? What can executives do, other than to
stamp their feet and rage at the developers?

WHAT WENT WRONG?

Nearly 2600 years ago, Aesop told the story of the Tortoise and the Hare.
The moral of that story has been stated many times in many different ways:



e “Slow and steady wins the race.”
e “The race is not to the swift, nor the battle to the strong.”

* “The more haste, the less speed.”

The story itself illustrates the foolishness of overconfidence. The Hare, so
confident in its intrinsic speed, does not take the race seriously, and so naps
while the Tortoise crosses the finish line.

Modern developers are in a similar race, and exhibit a similar overconfidence.
Oh, they don’t sleep—far from it. Most modern developers work their butts
off. But a part of their brain does sleep—the part that knows that good,
clean, well-designed code matters.

These developers buy into a familiar lie: “We can clean it up later; we just
have to get to market first!” Of course, things never do get cleaned up later,
because market pressures never abate. Getting to market first simply means
that you’ve now got a horde of competitors on your tail, and you have to stay
ahead of them by running as fast as you can.

And so the developers never switch modes. They can’t go back and clean
things up because they’ve got to get the next feature done, and the next, and
the next, and the next. And so the mess builds, and productivity continues its
asymptotic approach toward zero.

Just as the Hare was overconfident in its speed, so the developers are
overconfident in their ability to remain productive. But the creeping mess of
code that saps their productivity never sleeps and never relents. If given its
way, it will reduce productivity to zero in a matter of months.

The bigger lie that developers buy into is the notion that writing messy code
makes them go fast in the short term, and just slows them down in the long
term. Developers who accept this lie exhibit the hare’s overconfidence in their
ability to switch modes from making messes to cleaning up messes sometime
in the future, but they also make a simple error of fact. The fact is that
making messes is always slower than staying clean, no matter which time
scale you are using.



Consider the results of a remarkable experiment performed by Jason Gorman
depicted in Figure 1.6. Jason conducted this test over a period of six days.
Each day he completed a simple program to convert integers into Roman
numerals. He knew his work was complete when his predefined set of
acceptance tests passed. Each day the task took a little less than 30 minutes.
Jason used a well-known cleanliness discipline named test-driven development
(TDD) on the first, third, and fifth days. On the other three days, he wrote
the code without that discipline.
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Figure 1.6 Time to completion by iterations and use/non-use of TDD

First, notice the learning curve apparent in Figure 1.6. Work on the latter days
is completed more quickly than the former days. Notice also that work on the
TDD days proceeded approximately 10% faster than work on the non-TDD
days, and that even the slowest TDD day was faster than the fastest
non-TDD day.

Some folks might look at that result and think it’s a remarkable outcome. But
to those who haven’t been deluded by the Hare’s overconfidence, the result is

expected, because they know this simple truth of software development:

The only way to go fast, is to go well.



And that’s the answer to the executive’s dilemma. The only way to reverse the
decline in productivity and the increase in cost is to get the developers to stop
thinking like the overconfident Hare and start taking responsibility for the
mess that they’ve made.

The developers may think that the answer is to start over from scratch and
redesign the whole system—but that’s just the Hare talking again. The same
overconfidence that led to the mess is now telling them that they can build it
better if only they can start the race over. The reality is less rosy:

Their overconfidence will drive the redesign into the same mess as the
original project.

CONCLUSION

In every case, the best option is for the development organization to recognize
and avoid its own overconfidence and to start taking the quality of its
software architecture seriously.

To take software architecture seriously, you need to know what good software
architecture is. To build a system with a design and an architecture that
minimize effort and maximize productivity, you need to know which
attributes of system architecture lead to that end.

That’s what this book is about. It describes what good clean architectures and
designs look like, so that software developers can build systems that will have
long profitable lifetimes.



DESIG CIPLES

Good software systems begin with clean code. On the one hand, if the bricks
aren’t well made, the architecture of the building doesn’t matter much. On
the other hand, you can make a substantial mess with well-made bricks. This
is where the SOLID principles come in.
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The SOLID principles tell us how to arrange our functions and data
structures into classes, and how those classes should be interconnected. The
use of the word “class” does not imply that these principles are applicable
only to object-oriented software. A class is simply a coupled grouping of
functions and data. Every software system has such groupings, whether they
are called classes or not. The SOLID principles apply to those groupings.

The goal of the principles is the creation of mid-level software structures that:

 Tolerate change,
* Are easy to understand, and

* Are the basis of components that can be used in many software systems.

The term “mid-level” refers to the fact that these principles are applied by
programmers working at the module level. They are applied just above the
level of the code and help to define the kinds of software structures used
within modules and components.

Just as it is possible to create a substantial mess with well-made bricks, so it is
also possible to create a system-wide mess with well-designed mid-level
components. For this reason, once we have covered the SOLID principles, we
will move on to their counterparts in the component world, and then to the
principles of high-level architecture.

The history of the SOLID principles is long. I began to assemble them in the
late 1980s while debating software design principles with others on USENET
(an early kind of Facebook). Over the years, the principles have shifted and
changed. Some were deleted. Others were merged. Still others were added.
The final grouping stabilized in the early 2000s, although I presented them in
a different order.

In 2004 or thereabouts, Michael Feathers sent me an email saying that if 1
rearranged the principles, their first words would spell the word SOLID—and
thus the SOLID principles were born.



The chapters that follow describe each principle more thoroughly. Here is the
executive summary:

» SRP: The Single Responsibility Principle
An active corollary to Conway’s law: The best structure for a software
system is heavily influenced by the social structure of the organization
that uses it so that each software module has one, and only one, reason
to change.

¢ OCP: The Open-Closed Principle

Bertrand Meyer made this principle famous in the 1980s. The gist is that
for software systems to be easy to change, they must be designed to allow
the behavior of those systems to be changed by adding new code, rather
than changing existing code.

e LSP: The Liskov Substitution Principle

Barbara Liskov’s famous definition of subtypes, from 1988. In short, this
principle says that to build software systems from interchangeable parts,
those parts must adhere to a contract that allows those parts to be substi-
tuted one for another.

o ISP: The Interface Segregation Principle

This principle advises software designers to avoid depending on things that
they don’t use.

« DIP: The Dependency Inversion Principle

The code that implements high-level policy should not depend on the code
that implements low-level details. Rather, details should depend on policies.

These principles have been described in detail in many different publications'
over the years. The chapters that follow will focus on the architectural
implications of these principles instead of repeating those detailed
discussions. If you are not already familiar with these principles, what follows
is insufficient to understand them in detail and you would be well advised to
study them in the footnoted documents.

1. For example, Agile Software Development, Principles, Patterns, and Practices, Robert C. Martin,
Prentice Hall, 2002, http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod, and
https://en.wikipedia.org/wiki/SOLID_ (object-oriented_design) (or just google SOLID).
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Of all the SOLID principles, the Single Responsibility Principle (SRP) might
be the least well understood. That’s likely because it has a particularly
inappropriate name. It is too easy for programmers to hear the name and
then assume that it means that every module should do just one thing,.

Make no mistake, there is a principle like that. A function should do one, and
only one, thing. We use that principle when we are refactoring large functions
into smaller functions; we use it at the lowest levels. But it is not one of the
SOLID principles—it is not the SRP.

Historically, the SRP has been described this way:
A module should have one, and only one, reason to change.

Software systems are changed to satisfy users and stakeholders; those users
and stakeholders are the “reason to change” that the principle is talking
about. Indeed, we can rephrase the principle to say this:

A module should be responsible to one, and only one, user or stakeholder.

Unfortunately, the words “user” and “stakeholder” aren’t really the right
words to use here. There will likely be more than one user or stakeholder
who wants the system changed in the same way. Instead, we’re really referring
to a group—one or more people who require that change. We’ll refer to that
group as an actor.

Thus the final version of the SRP is:
A module should be responsible to one, and only one, actor.

Now, what do we mean by the word “module”? The simplest definition is just
a source file. Most of the time that definition works fine. Some languages and
development environments, though, don’t use source files to contain their
code. In those cases a module is just a cohesive set of functions and data
structures.



That word “cohesive” implies the SRP. Cohesion is the force that binds
together the code responsible to a single actor.

Perhaps the best way to understand this principle is by looking at the
symptoms of violating it.

SYMPTOM 1: ACCIDENTAL DUPLICATION

My favorite example is the Employee class from a payroll application. It has
three methods: calculatePay(), reportHours(), and save() (Figure 7.1).

“s. [ Employee
Cr '+ calculatePay
----- =1 + reportHours
_7| + save
y -
C

Figure 7.1 The Employee class

This class violates the SRP because those three methods are responsible to
three very different actors.

e The calculatePay() method is specified by the accounting department,
which reports to the CFO.

e The reportHours() method is specified and used by the human resources
department, which reports to the COO.

e The save() method is specified by the database administrators (DBAs),
who report to the CTO.

By putting the source code for these three methods into a single Employee
class, the developers have coupled each of these actors to the others. This



coupling can cause the actions of the CFO’s team to affect something that the
COOQ’s team depends on.

For example, suppose that the calculatePay() function and the
reportHours() function share a common algorithm for calculating non-
overtime hours. Suppose also that the developers, who are careful not to
duplicate code, put that algorithm into a function named regularHours()

(Figure 7.2).
calculatePay —l l— reportHours

regularHours

Figure 7.2 Shared algorithm

Now suppose that the CFO’s team decides that the way non-overtime hours
are calculated needs to be tweaked. In contrast, the COQO’s team in HR does
not want that particular tweak because they use non-overtime hours for a
different purpose.

A developer is tasked to make the change, and sees the convenient
regularHours() function called by the calculatePay() method.
Unfortunately, that developer does not notice that the function is also called
by the reportHours() function.

The developer makes the required change and carefully tests it. The CFO’s
team validates that the new function works as desired, and the system is
deployed.

Of course, the COO’s team doesn’t know that this is happening. The HR
personnel continue to use the reports generated by the reportHours()
function—but now they contain incorrect numbers. Eventually the problem is
discovered, and the COO is livid because the bad data has cost his budget
millions of dollars.



We’ve all seen things like this happen. These problems occur because we put
code that different actors depend on into close proximity. The SRP says to
separate the code that different actors depend on.

SYMPTOM 2: MERGES

It’s not hard to imagine that merges will be common in source files that
contain many different methods. This situation is especially likely if those
methods are responsible to different actors.

For example, suppose that the CTO’s team of DBAs decides that there should
be a simple schema change to the Employee table of the database. Suppose
also that the COO’s team of HR clerks decides that they need a change in the
format of the hours report.

Two different developers, possibly from two different teams, check out the
Employee class and begin to make changes. Unfortunately their changes
collide. The result is a merge.

I probably don’t need to tell you that merges are risky affairs. Our tools are
pretty good nowadays, but no tool can deal with every merge case. In the end,
there is always risk.

In our example, the merge puts both the CTO and the COO at risk. It’s not
inconceivable that the CFO could be affected as well.

There are many other symptoms that we could investigate, but they all involve
multiple people changing the same source file for different reasons.

Once again, the way to avoid this problem is to separate code that supports
different actors.



SOLUTIONS

There are many different solutions to this problem. Each moves the functions
into different classes.

Perhaps the most obvious way to solve the problem is to separate the data
from the functions. The three classes share access to EmployeeData, which is
a simple data structure with no methods (Figure 7.3). Each class holds only
the source code necessary for its particular function. The three classes are not
allowed to know about each other. Thus any accidental duplication is
avoided.

PayCalculator
+ calculatePay

—

HourReporter Employee
+ reportHours - Data

EmployeeSaver
+ saveEmployee

Figure 7.3 The three classes do not know about each other

The downside of this solution is that the developers now have three classes
that they have to instantiate and track. A common solution to this dilemma is
to use the Facade pattern (Figure 7.4).

PayCalculator
Employee + calculatePay
Facade
+ calculatePay
+ reportHours
+.8ave _[ EmployeeSaver
+ saveEmployee

HourReporter Employee
+ reportHours Data

Figure 7.4 The Facade pattern

The EmployeeFacade contains very little code. It is responsible for
instantiating and delegating to the classes with the functions.



Some developers prefer to keep the most important business rules closer to
the data. This can be done by keeping the most important method in the
original Employee class and then using that class as a Facade for the lesser
functions (Figure 7.5).

HourReporter
Employee | + reportHours

- employeeData

+ calculatePay

+ reportHours

+ save >

EmployeeSaver
+ saveEmployee

Figure 7.5 The most important method is kept in the original Employee class and used as a
Facade for the lesser functions

You might object to these solutions on the basis that every class would
contain just one function. This is hardly the case. The number of functions
required to calculate pay, generate a report, or save the data is likely to be
large in each case. Each of those classes would have many private methods
in them.

Each of the classes that contain such a family of methods is a scope. Outside
of that scope, no one knows that the private members of the family exist.

CONCLUSION

The Single Responsibility Principle is about functions and classes—but it
reappears in a different form at two more levels. At the level of components,
it becomes the Common Closure Principle. At the architectural level, it
becomes the Axis of Change responsible for the creation of Architectural
Boundaries. We’ll be studying all of these ideas in the chapters to come.
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The Open-Closed Principle (OCP) was coined in 1988 by Bertrand Meyer.!
It says:

A software artifact should be open for extension but closed for modification.

In other words, the behavior of a software artifact ought to be extendible,
without having to modify that artifact.

This, of course, is the most fundamental reason that we study software
architecture. Clearly, if simple extensions to the requirements force massive
changes to the software, then the architects of that software system have
engaged in a spectacular failure.

Most students of software design recognize the OCP as a principle that
guides them in the design of classes and modules. But the principle takes on
even greater significance when we consider the level of architectural
components.

A thought experiment will make this clear.

A THOUGHT EXPERIMENT

Imagine, for a moment, that we have a system that displays a financial
summary on a web page. The data on the page is scrollable, and negative
numbers are rendered in red.

Now imagine that the stakeholders ask that this same information be turned
into a report to be printed on a black-and-white printer. The report should be
properly paginated, with appropriate page headers, page footers, and column
labels. Negative numbers should be surrounded by parentheses.

Clearly, some new code must be written. But how much old code will have
to change?

1. Bertrand Meyer. Object Oriented Software Construction, Prentice Hall, 1988, p. 23.



A good software architecture would reduce the amount of changed code to
the barest minimum. Ideally, zero.

How? By properly separating the things that change for different reasons (the
Single Responsibility Principle), and then organizing the dependencies
between those things properly (the Dependency Inversion Principle).

By applying the SRP, we might come up with the data-flow view shown in
Figure 8.1. Some analysis procedure inspects the financial data and produces
reportable data, which is then formatted appropriately by the two reporter

processes.
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Figure 8.1 Applying the SRP

The essential insight here is that generating the report involves two separate
responsibilities: the calculation of the reported data, and the presentation of
that data into a web- and printer-friendly form.

Having made this separation, we need to organize the source code
dependencies to ensure that changes to one of those responsibilities do not
cause changes in the other. Also, the new organization should ensure that the
behavior can be extended without undo modification.

We accomplish this by partitioning the processes into classes, and separating
those classes into components, as shown by the double lines in the diagram in
Figure 8.2. In this figure, the component at the upper left is the Controller.
At the upper right, we have the Interactor. At the lower right, there is the
Database. Finally, at the lower left, there are four components that represent
the Presenters and the Views.
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Figure 8.2 Partitioning the processes into classes and separating the classes into components

Classes marked with <I> are interfaces; those marked with <DS> are data
structures. Open arrowheads are using relationships. Closed arrowheads are
implements or inberitance relationships.

The first thing to notice is that all the dependencies are source code
dependencies. An arrow pointing from class A to class B means that the
source code of class A mentions the name of class B, but class B mentions
nothing about class A. Thus, in Figure 8.2, FinancialDataMapper knows
about FinancialDataGateway through an implements relationship, but
FinancialGateway knows nothing at all about FinancialDataMapper.

The next thing to notice is that each double line is crossed in one direction
only. This means that all component relationships are unidirectional, as
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shown in the component graph in Figure 8.3. These arrows point toward the
components that we want to protect from change.

Financial E!j Financial
Report > Report
Controller :;:] Interactor
A A
Screen Print Financial
Presenter Presenter Database
A A

Web PDF
View View

Figure 8.3 The component relationships are unidirectional

Let me say that again: If component A should be protected from changes in
component B, then component B should depend on component A.

We want to protect the Controller from changes in the Presenters. We want to
protect the Presenters from changes in the Views. We want to protect the
Interactor from changes in—well, anything.

The Interactor is in the position that best conforms to the OCP. Changes to
the Database, or the Controller, or the Presenters, or the Views, will have no
impact on the Interactor.

Why should the Interactor hold such a privileged position? Because it
contains the business rules. The Interactor contains the highest-level policies



of the application. All the other components are dealing with peripheral
concerns. The Interactor deals with the central concern.

Even though the Controller is peripheral to the Interactor, it is nevertheless
central to the Presenters and Views. And while the Presenters might be
peripheral to the Controller, they are central to the Views.

Notice how this creates a hierarchy of protection based on the notion of
“level.” Interactors are the highest-level concept, so they are the most
protected. Views are among the lowest-level concepts, so they are the

least protected. Presenters are higher level than Views, but lower level than
the Controller or the Interactor.

This is how the OCP works at the architectural level. Architects separate
functionality based on how, why, and when it changes, and then organize
that separated functionality into a hierarchy of components. Higher-level
components in that hierarchy are protected from the changes made to
lower-level components.

DIRECTIONAL CONTROL

If you recoiled in horror from the class design shown earlier, look again.
Much of the complexity in that diagram was intended to make sure that the
dependencies between the components pointed in the correct direction.

For example, the FinancialDataGateway interface between the
FinancialReportGenerator and the FinancialDataMapper exists to
invert the dependency that would otherwise have pointed from the Interactor
component to the Database component. The same is true of the
FinancialReportPresenter interface, and the two View interfaces.

INFORMATION HIDING

The FinancialReportRequester interface serves a different purpose. It is
there to protect the FinancialReportController from knowing too much



about the internals of the Interactor. If that interface were not there, then the
Controller would have transitive dependencies on the FinancialEntities.

Transitive dependencies are a violation of the general principle that software
entities should not depend on things they don’t directly use. We’ll encounter
that principle again when we talk about the Interface Segregation Principle
and the Common Reuse Principle.

So, even though our first priority is to protect the Interactor from changes to
the Controller, we also want to protect the Controller from changes to the
Interactor by hiding the internals of the Interactor.

CONCLUSION

The OCP is one of the driving forces behind the architecture of systems.
The goal is to make the system easy to extend without incurring a high
impact of change. This goal is accomplished by partitioning the system into
components, and arranging those components into a dependency hierarchy
that protects higher-level components from changes in lower-level
components.
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In 1988, Barbara Liskov wrote the following as a way of defining subtypes.

What is wanted here is something like the following substitution property: If
for each object ol of type S there is an object 02 of type T such that for all
programs P defined in terms of T, the behavior of P is unchanged when ol is
substituted for o2 then S is a subtype of T.

To understand this idea, which is known as the Liskov Substitution Principle
(LSP), let’s look at some examples.

GUIDING THE USE OF INHERITANCE

Imagine that we have a class named License, as shown in Figure 9.1. This
class has a method named calcFee(), which is called by the Bi1ling
application. There are two “subtypes” of License: PersonallLicense and
BusinessLicense. They use different algorithms to calculate the license fee.

———<I>—
Billing > License
+ calcFee()
Personal Business
License License

- users

Figure 9.1 License, and its derivatives, conform to LSP

This design conforms to the LSP because the behavior of the Billing
application does not depend, in any way, on which of the two subtypes it
uses. Both of the subtypes are substitutable for the License type.

1. Barbara Liskov, “Data Abstraction and Hierarchy,” SIGPLAN Notices 23, 5 (May 1988).



THE SQUARE/RECTANGLE PROBLEM

The canonical example of a violation of the LSP is the famed (or infamous,
depending on your perspective) square/rectangle problem (Figure 9.2).

User >| Rectangle

+setH, +setW

|

Square

+ setSide

Figure 9.2 The infamous square/rectangle problem

In this example, Square is not a proper subtype of Rectangle because the
height and width of the Rectangle are independently mutable; in contrast,
the height and width of the Square must change together. Since the User
believes it is communicating with a Rectangle, it could easily get confused.
The following code shows why:

Rectangle r = ..
r.setW(b);
r.setH(2);

assert(r.area() == 10);
If the ... code produced a Square, then the assertion would fail.

The only way to defend against this kind of LSP violation is to add
mechanisms to the User (such as an if statement) that detects whether the
Rectangle is, in fact, a Square. Since the behavior of the User depends on
the types it uses, those types are not substitutable.



LSP AND ARCHITECTURE

In the early years of the object-oriented revolution, we thought of the LSP as
a way to guide the use of inheritance, as shown in the previous sections.
However, over the years the LSP has morphed into a broader principle of
software design that pertains to interfaces and implementations.

The interfaces in question can be of many forms. We might have a Java-style
interface, implemented by several classes. Or we might have several Ruby
classes that share the same method signatures. Or we might have a set of
services that all respond to the same REST interface.

In all of these situations, and more, the LSP is applicable because there are
users who depend on well-defined interfaces, and on the substitutability of
the implementations of those interfaces.

The best way to understand the LSP from an architectural viewpoint is to look
at what happens to the architecture of a system when the principle is violated.

ExAMPLE LSP VioLATION

Assume that we are building an aggregator for many taxi dispatch services.
Customers use our website to find the most appropriate taxi to use, regardless
of taxi company. Once the customer makes a decision, our system dispatches
the chosen taxi by using a restful service.

Now assume that the URI for the restful dispatch service is part of the
information contained in the driver database. Once our system has chosen a
driver appropriate for the customer, it gets that URI from the driver record
and then uses it to dispatch the driver.

Suppose Driver Bob has a dispatch URI that looks like this:

purplecab.com/driver/Bob



Our system will append the dispatch information onto this URI and send it
with a PUT, as follows:

purplecab.com/driver/Bob
/pickupAddress/24 Maple St.
/pickupTime/153
/destination/ORD

Clearly, this means that all the dispatch services, for all the different
companies, must conform to the same REST interface. They must treat the
pickupAddress, pickupTime, and destination fields identically.

Now suppose the Acme taxi company hired some programmers who didn’t
read the spec very carefully. They abbreviated the destination field to just
dest. Acme is the largest taxi company in our area, and Acme’s CEO’s
ex-wife is our CEQ’s new wife, and ... Well, you get the picture. What would
happen to the architecture of our system?

Obviously, we would need to add a special case. The dispatch request for any
Acme driver would have to be constructed using a different set of rules from
all the other drivers.

The simplest way to accomplish this goal would be to add an if statement to
the module that constructed the dispatch command:

if (driver.getDispatchUri () .startsWith ("acme.com"))..

But, of course, no architect worth his or her salt would allow such a
construction to exist in the system. Putting the word “acme” into the code
itself creates an opportunity for all kinds of horrible and mysterious errors,
not to mention security breaches.

For example, what if Acme became even more successful and bought the
Purple Taxi company. What if the merged company maintained the separate



brands and the separate websites, but unified all of the original companies’
systems? Would we have to add another if statement for “purple”?

Our architect would have to insulate the system from bugs like this by
creating some kind of dispatch command creation module that was driven by
a configuration database keyed by the dispatch URI. The configuration data
might look something like this:

URI Dispatch Format
Acme.com /pickupAddress/%$s/pickupTime/%s/dest/%s
* x /pickupAddress/%s/pickupTime/%$s/destination/%s

And so our architect has had to add a significant and complex mechanism
to deal with the fact that the interfaces of the restful services are not all
substitutable.

CONCLUSION

The LSP can, and should, be extended to the level of architecture. A simple
violation of substitutability, can cause a system’s architecture to be polluted
with a significant amount of extra mechanisms.



ISP: THE INTERFACE
SEGREGATION
PRINCIPLE




The Interface Segregation Principle (ISP) derives its name from the diagram
shown in Figure 10.1.

User1 User2 User3

A4
> OPs =

+0p1 +0p2 +0p3

Figure 10.1 The Interface Segregation Principle

In the situation illustrated in Figure 10.1, there are several users who use the
operations of the OPS class. Let’s assume that Userl uses only opl, User?2
uses only op2, and User3 uses only op3.

Now imagine that OPS is a class written in a language like Java. Clearly, in
that case, the source code of Userl will inadvertently depend on op2 and
op3, even though it doesn’t call them. This dependence means that a change
to the source code of op2 in O0PS will force Userl to be recompiled and
redeployed, even though nothing that it cared about has actually changed.

This problem can be resolved by segregating the operations into interfaces as
shown in Figure 10.2.

Again, if we imagine that this is implemented in a statically typed language
like Java, then the source code of Userl will depend on U10ps, and op1, but
will not depend on 0PS. Thus a change to 0PS that Userl does not care
about will not cause Userl to be recompiled and redeployed.



User1 User2 User3

<I>— <I>— <I>—
U10ps U20ps U30ps
+ op1 + 0p2 + 0p3

OPS

+0p1 +0p2 +0p3

Figure 10.2 Segregated operations

ISP AND LANGUAGE

Clearly, the previously given description depends critically on language type.
Statically typed languages like Java force programmers to create declarations
that users must import, or use, or otherwise include. It is these included
declarations in source code that create the source code dependencies that
force recompilation and redeployment.

In dynamically typed languages like Ruby and Python, such declarations don’t
exist in source code. Instead, they are inferred at runtime. Thus there are no
source code dependencies to force recompilation and redeployment. This is
the primary reason that dynamically typed languages create systems that are
more flexible and less tightly coupled than statically typed languages.

This fact could lead you to conclude that the ISP is a language issue, rather
than an architecture issue.



ISP AND ARCHITECTURE

If you take a step back and look at the root motivations of the ISP, you can
see a deeper concern lurking there. In general, it is harmful to depend on
modules that contain more than you need. This is obviously true for source
code dependencies that can force unnecessary recompilation and
redeployment—but it is also true at a much higher, architectural level.

Consider, for example, an architect working on a system, S. He wants to
include a certain framework, F, into the system. Now suppose that the
authors of F have bound it to a particular database, D. So S depends on E
which depends on D (Figure 10.3).

System S > Framework F > Database D

Figure 10.3 A problematic architecture

Now suppose that D contains features that F does not use and, therefore, that
S does not care about. Changes to those features within D may well force the
redeployment of F and, therefore, the redeployment of S. Even worse, a
failure of one of the features within D may cause failures in F and S.

CONCLUSION

The lesson here is that depending on something that carries baggage that you
don’t need can cause you troubles that you didn’t expect.

We’ll explore this idea in more detail when we discuss the Common Reuse
Principle in Chapter 13, “Component Cohesion.”



DIP: THE
DEPENDENCY
INVERSION PRINCIPLE

The Dependency Inversion Principle (DIP) tells us that the most flexible

systems are those in which source code dependencies refer only to
abstractions, not to concretions.

In a statically typed language, like Java, this means that the use, import,
and include statements should refer only to source modules containing
interfaces, abstract classes, or some other kind of abstract declaration.
Nothing concrete should be depended on.



The same rule applies for dynamically typed languages, like Ruby and
Python. Source code dependencies should not refer to concrete modules.
However, in these languages it is a bit harder to define what a concrete
module is. In particular, it is any module in which the functions being called
are implemented.

Clearly, treating this idea as a rule is unrealistic, because software systems
must depend on many concrete facilities. For example, the String class in
Java is concrete, and it would be unrealistic to try to force it to be abstract.
The source code dependency on the concrete java.lang.string cannot,
and should not, be avoided.

By comparison, the String class is very stable. Changes to that class are very
rare and tightly controlled. Programmers and architects do not have to worry
about frequent and capricious changes to String.

For these reasons, we tend to ignore the stable background of operating
system and platform facilities when it comes to DIP. We tolerate those
concrete dependencies because we know we can rely on them not to change.

It is the volatile concrete elements of our system that we want to avoid
depending on. Those are the modules that we are actively developing, and
that are undergoing frequent change.

STABLE ABSTRACTIONS

Every change to an abstract interface corresponds to a change to its concrete
implementations. Conversely, changes to concrete implementations do not
always, or even usually, require changes to the interfaces that they implement.
Therefore interfaces are less volatile than implementations.

Indeed, good software designers and architects work hard to reduce the
volatility of interfaces. They try to find ways to add functionality to
implementations without making changes to the interfaces. This is Software
Design 101.



The implication, then, is that stable software architectures are those that
avoid depending on volatile concretions, and that favor the use of stable
abstract interfaces. This implication boils down to a set of very specific

coding practices:

e Don’t refer to volatile concrete classes. Refer to abstract interfaces instead.
This rule applies in all languages, whether statically or dynamically typed.
It also puts severe constraints on the creation of objects and generally
enforces the use of Abstract Factories.

« Don’t derive from volatile concrete classes. This is a corollary to the
previous rule, but it bears special mention. In statically typed languages,
inheritance is the strongest, and most rigid, of all the source code
relationships; consequently, it should be used with great care. In
dynamically typed languages, inheritance is less of a problem, but it is still
a dependency—and caution is always the wisest choice.

« Don’t override concrete functions. Concrete functions often require source
code dependencies. When you override those functions, you do not
eliminate those dependencies—indeed, you inherit them. To manage those
dependencies, you should make the function abstract and create multiple
implementations.

* Never mention the name of anything concrete and volatile. This is really
just a restatement of the principle itself.

FACTORIES

To comply with these rules, the creation of volatile concrete objects requires
special handling. This caution is warranted because, in virtually all languages,
the creation of an object requires a source code dependency on the concrete
definition of that object.

In most object-oriented languages, such as Java, we would use an Abstract
Factory to manage this undesirable dependency.

The diagram in Figure 11.1 shows the structure. The Application uses the
ConcreteImpl through the Service interface. However, the Application



must somehow create instances of the ConcreteImpl. To achieve this
without creating a source code dependency on the ConcreteImpl, the
Application calls the makeSvc method of the ServiceFactory interface.
This method is implemented by the ServiceFactoryImpl class, which
derives from ServiceFactory. That implementation instantiates the
ConcretelImpl and returns it as a Service.

———<I>—
Application Service
4
Y <> 7
Service |- Concrete
Factory Impl
+ makeSvc \
Service <<creates>>
Factory Impl
+ makeSvc
Figure 11.1 Use of the Abstract Factory pattern to manage the dependency

The curved line in Figure 11.1 is an architectural boundary. It separates the
abstract from the concrete. All source code dependencies cross that curved
line pointing in the same direction, toward the abstract side.

The curved line divides the system into two components: one abstract and the
other concrete. The abstract component contains all the high-level business
rules of the application. The concrete component contains all the
implementation details that those business rules manipulate.

Note that the flow of control crosses the curved line in the opposite direction
of the source code dependencies. The source code dependencies are inverted
against the flow of control—which is why we refer to this principle as
Dependency Inversion.



CONCRETE COMPONENTS

The concrete component in Figure 11.1 contains a single dependency, so it
violates the DIP. This is typical. DIP violations cannot be entirely removed,
but they can be gathered into a small number of concrete components and
kept separate from the rest of the system.

Most systems will contain at least one such concrete component—often
called main because it contains the main' function. In the case illustrated in
Figure 11.1, the main function would instantiate the ServiceFactoryImpl
and place that instance in a global variable of type ServiceFactory. The
Application would then access the factory through that global variable.

CONCLUSION

As we move forward in this book and cover higher-level architectural
principles, the DIP will show up again and again. It will be the most visible
organizing principle in our architecture diagrams. The curved line in

Figure 11.1 will become the architectural boundaries in later chapters.

The way the dependencies cross that curved line in one direction, and toward
more abstract entities, will become a new rule that we will call the
Dependency Rule.

1. In other words, the function that is invoked by the operating system when the application is first started up.
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COMPONENT
PRINCIPLES

If the SOLID principles tell us how to arrange the bricks into walls and
rooms, then the component principles tell us how to arrange the rooms into
buildings. Large software systems, like large buildings, are built out of smaller
components.

In Part IV, we will discuss what software components are, which elements
should compose them, and how they should be composed together into
systems.



